Replication and Transaction Management
in a Temporal Database

Matthew Dillon
Backplane, Inc.

Transactional Consistency
Client #1 Client #2

!
BONUS=BONUS+@ Fred's C, BONUS=BONUS+$15
Bonus

~_

CORRECT RESULT: $25

INCONSISTENT/INCOHERENT (MY BONUS GOT LOST!)

Read BONUS < 0
-
BONUS=BONUS+$10 Read BONUS
COMMIT — > $10 BONUS=BONUS+$15
< COMMIT
$15

INCORRECT RESULT: $15

Enforcing Consistency with Record Locking

Client #2

—— p» Read BONUS (stalled)
Read BONUS (stalled)
— P Read BONUS (unstalled)

< BONUS=BONUS+$15
< COMMIT

Client #1
WITH RECORD LOCKING

Read BONUS L $0
BONUS=BONUS+$10 L $10 |L?
L $10 |L?
COMMIT —» |U| $10 |L
$25 | L
$25 |U
CORRECT RESULT:

$25

ALTERNATIVE RECORD LOCKING

Read BONUS < |S

S
BONUS=BONUS+$10 ————» | L
coMMIT—*» |U

$0

$0 S
—$10 > F

$10

$10 |S

$25 | L

$25 |U

———» Read BONUS

——» FAIL (STALL, RETRY)
(transaction aborted)

——» Read BONUS

< BONUS=BONUS+$15
< COMMIT

CORRECT RESULT: $25

Deadlock/LiveLock Issues With Record Locking

Client #2

— » Read EXPENSES

Client #1
RECORD LOCKING EXAMPLE
Read BONUS L.| BONUS EXPENSES | L
.| BONUS |L.?
Read EXPENSES < L? EXPENSES | L

(BLOCKED)

Read BONUS *+
Update BONUS ————»

Read EXPENSES

> Read BONUS
(BLOCKED)

ALTERNATIVE RECORD LOCKING

— » Read EXPENSES
- Update EXPENSES

S| BONUS EXPENSES | S
L | BONUS EXPENSES | L
L| BONUS |F

F |EXPENSES | L

(fails)

> Read BONUS (fails)

Possible Livelock. If we block instead of fail, guarenteed deadlock

Read BONUS *+
Update BONUS —————»

(FAIL)
BACKOUT BONUS

— » Read EXPENSES
- Update EXPENSES

» Read BONUS

S| BONUS EXPENSES| S
L | BONUS EXPENSES | L
S| BONUS |S

F| BONUS L 6 —=

F| BONUS |F

Update BONUS

» (FAIL, BONUS invalid)

If we allow client #2 to use uncommitted data from client #1, and client #1 later fails,
client #2 must then fail leading to a possible livelock.

Fallback Replication

Client #1)

|

FALLBACK

»

Primary

Database
.

C, Client #2

ASYNCHi%NOUS QUEUE i

Hot
Backup
7

*FALLBACK TO HOT BACKUP ON FAILURE
*HOT BACKUP MAY NOT BE SO HOT

*COMMIT PERFORMANCE SAME AS SINGLE-DB CASE
*FALLFORWARD IS MORE PROBLEMATIC

FALLBACK

.

Asynchronous non-Coherent Replication

Clients

»

PEER

ASYNCH QUEUE AS&&QUEUE

ASYNCH QUEUE
Clients) PEER @ > | PEER » Clients

*TRANSACTIONS CAN BE DISTRIBUTED

*BOTH READ-ONLY AND MODIFYING TRANSACTIONS SCALE

*COMMIT TO SINGLE PEER, REPLICATE TO OTHERS. COMMIT DOES NOT GUARENTEE CORRECTNESS
*CONFLICT RESOLUTION MUST OCCUR AFTER THE FACT

Fully Synchronous Coherent Replication

Clients

»

PEER

2 or 3-PHAS
COMMIT

PROTOCOL
Clients) PEER | < > | PEER ” Clients

*TRANSACTIONS CAN BE DISTRIBUTED

*READ-ONLY TRANSACTIONS SCALE

*MODIFYING TRANSACTIONS MUST TALK TO ALL PEERS
*POTENTIALLY SERIOUS LOCKING & TIMEOUT ISSUES IF A PEER FAILS
*MANY IMPLEMENTATIONS REQUIRE A DESIGNATED 'MASTER' NODE

Temporal Database Table Structure

TRANSID KEY VALUE

INSERT | I 0830 BONUS $0 INSERT BONUS = $0

D 0831 BONUS $0 UPDATE BONUS=BONUS+$10
LD I 0831 BONUS $10

D 0832 BONUS 10 UPDATE BONUS=BONUS+$15
UPDATE $

: I 0832 BONUS $25
Freeze Point| ™ DEIETE |D| 0833 BONUS $25 DELETE BONUS

*L. OCKLESS TRANSACTIONS ARE POSSIBLE

*HISTORICAL AS-OF QUERIES ARE POSSIBLE (INCLUDING META-DAT)A)

*EASIER TO BACKUP, RESTORE, AND ARCHIVE

*EASIER TO RECOVER CORRUPTED DATABASE

*’APPEND-ONLY FILE STRUCTURE POSSIBLE

*L. OCKLESS TRANSACTIONS CAN EXTEND TO REPLICATED PEERS USING TWO-PHASE COMMIT
*INCREMENTAL REPLICATION WITHOUT QUEUES POSSIBLE

*UNLESS VACUUMED, TABLE FILES GROW WITH EACH INSERT, UPDATE, OR DELETION
*L.OTS OF 'DELETED' RECORDS CAN CLUTTER INDEXES AND TABLE DATA

*AN UPDATE APPENDS TWO RECORDS INSTEAD OF ONE

*A DELETE APPENDS ONE RECORD INSTEAD OF FLAGGING AN EXISTING RECORD

Reverse Scan Optimization

TRANSID KEY VALUE
INSERT | I 0830 BONUS $0
D 0831 BONUS $0
CIDIANE 0831 BONUS $10
D 0832 BONUS $10
CIDIANE 0832 BONUS $25
D 0832 BONUS $25
: CIDIANE 0832 BONUS $40
Freeze Point | UPDATE |2 0832 BONUS $40
I 0832 BONUS $55
DELETE | D 0833 BONUS $55

INSERT BONUS = $0
UPDATE BONUS=BONUS+$10

UPDATE BONUS=BONUS+$15

UPDATE BONUS=BONUS+$15

UPDATE BONUS=BONUS+$15

DELETE BONUS

°[F DATA IS KNOWN TO BE UNIQUE, ONLY ONE RECORD NEEDS TO BE SCANNED
*DELETIONS CAN BE PAIRED WITH INSERTS MORE EFFICIENTLY WITH A REVERSE SCAN

L.ockless Transactions

TRANSID

KEY

VALUE

INSERT

0830

BONUS

$0

Freeze Point A

4>

CLIENT1

COMPLETED COMMITS FROM OTHER CLIENTS

Freeze Point B

CLIENT2

*SIMULTANEOUS TRANSACTIONS BY CLIENTS 1 AND 2
*CLIENT QUERIES RELATIVE TO FREEZE POINT A
*MODIFICATIONS MADE TO TEMPORARY TABLES

UPDATE D 0831 BONUS $0
I 0831 BONUS $10
>
D 0832 BONUS $10
UPDATE
I 0832 BONUS $25

INSERT BONUS = $0

UPDATE BONUS=BONUS+$10

UPDATE BONUS=BONUS+$15

*CLIENT COMMIT-PHASE-1 COPIES TEMPORARY TABLE TO DATA SPACE

*CLIENT COMMIT-PHASE-1 RERUNS QUERIES WITH FREEZE POINT TEMPORARILY MOVED
*ANY DATA ACCESSED BETWEEN FREEZE POINT A AND DATA COPY INDICATES CONFLICT
*(NON-REPLICATED) AT LEAST ONE CLIENT ALWAYS GUARANTEED TO SUCCEED
*COMMIT-PHASE-2 SETS NEW ADDITION TO DATA SPACE IN STONE

*MULTIPLE CLIENTS CAN COMPLETE COMMIT-PHASE-2 OUT OF ORDER

*QUERIES ARE RUN TWICE

Quorum Based Commit

/N

>
PEER | = PEER

*TRANSACTIONS ARE RELATIVE TO A FREEZE POINT.

*SELECTED QUORUM MUST BE SYNCHRONIZED TO THE SPECIFIED FREEZE POINT
*COMMIT ONLY NEEDS TO OCCUR ON A QUORUM OF PEERS

*SYNCHRONIZED FREEZE POINT IS NOT UPDATED BY COMMIT

*REMAINING PEERS AND SNAPSHOTS GET UPDATED VIA REPLICATION
*SYNCHRONIZED FREEZE POINT IS UPDATED VIA REPLICATION

*PARTITIONING A PROBLEM IN WAN TOPOLOGIES

Quorum Based Replication (BEFORE)

INSERT |1 0830 INSERT |1 0830
D 0831 D 0831
CLIENT#1 ; 0831 CLIENT#1 I 0831

MISSING CLIENT#3 D 0833

INSERT | I 0830 -

MISSING

CLIENT#3|D 0833

NOTE: CLIENTS MADE NON-CONFLICTING COMMITS

Quorum Based Replication (AFTER)

INSERT

0830

CLIENT#1

0831

0831

INSERT

0830

CLIENT#1

0831

0831

CLIENT#3

0833

CLIENT#3

0833

AW

INSERT |1 0830

D 0831
I 0831

CLIENT#3|D 0833

CLIENT#1

*SYNCHRONIZED FREEZE POINT UPDATED WITH QUORUM

Out of Order Quorum-Based Replication (AFTER)

INSERT | 1 0830 INSERT |1 0830
D 0831 D 0831
CLIENT#1 I 0831 CLIENT#1 I o

CLIENT#3|D| o822 --

S

INSERT |1 0830

D 0831
I 0831

CLIENT#3 | D 0833 -

*ONLY NON-CONFLICTING TRANSACTIONS WILL REPLICATE OUT OF ORDER
*GENERALLY HARMLESS

*NO EFFECT ON REVERSE SCAN OPTIMIZATION

*TRANSACTION ID'S NOT MONOTONIC (SOLUTION: INDEX TRANSACTION ID'S)

CLIENT#1

Optimizing the Replication

0828
0829
0829
0830

D 0831

CLIENT#1 I o

MISSING

*DIRECT COPY FROM A SINGLE SOURCE UP TO THE EXISTING SYNCHRONIZATION POINT
*USE THE CLOSEST SOURCE, OR THE MOST COMPLETE SOURCE?
*QUORUM BASED REPLICATION FOR THE REMAINDER

Replicating a Historical Database

Clients
Clients

<
o
= 5 .

Clients) PEFR > | PEER » Clients

Clients

*CLIENTS MAY TALK TO A SINGLE NODE

*DATABASE SERVICES AT NODE ABSTRACT-OUT QUERY/COMMIT PROTOCOL
*REPLICATION PROCESS IS INDEPENDENT FROM QUERY/COMMIT PROCESS
*SPANNING TREE PROTOCOL REDUCES THE EFFECT OF LINK FAILURES
*PARTICIPATION DEPENDS ON FREEZE POINT / SYNCHRONIZATION OF NODES
*FIRST-RESPONDING-QUORUM MINIMIZES LATENCY

*AUTOMATIC QUERY RESTART IF LINK FAILURE INTERRUPTS RESPONDENT
*NATIVE REPLICATION POSSIBLE (NO QUEUEING)

*FULL-ON BACKUP LINKS POSSIBLE

*HIGH-LATENCY SNAPSHOT/BACKUP LINKS POSSIBLE

Query Management in a Replicated Environment

CLIENT PEER-A PEER-B PEER-C
BEGIN | »
QUERY1l | » BEGIN BEGIN BEGIN
QUERY2 | » | QUERY1 QUERY1 STALL
QUERY3 | » | QUERY2 QUERY?2 FREEZETS
QUERY4 | » | QUERY3 LATENCY QUERY1
QUERY5 | » | QUERY4 QUERY3 QUERY?2
QUERY6 ' » | QUERY5 QUERY4 QUERY3
QUERY7 ———» | QUERY6 QUERY5
QUERYS | » | QUERY7 LATENCY Pl ENGY
QUERY9 | » | QUERYS QUERY6 QUERY4
COMMIT1 | ®» | QUERY9 QUERY?7 QUERY5
QUORUM1/2 < COMMIT1 QUERYS LATENCY
QUERY9 QUERY6
QUORUM?2/2 = COMMIT1
COMMIT1 NOT YET
ACKNOWLEDGED
———» COMMIT2 -
COMMIT2 > COMMIT2
» ABORT

*MUST ABORT PEERS WHICH HAVE NOT YET ACKED COMMIT-1 AFTER SENDING COMMIT-2
*ONLY ONE PEER NEEDS TO RETURN QUERY RESULTS, BUT ALL MUST RECORD QUERIES
*CLIENT CAN CONTINUE BASED ON FIRST RESPONSE, COMMIT-2 WHEN QUORUM REACHED
*SOME PEERS CAN RETURN FAILURE LEGALLY AS LONG AS QUORUM RETURNS SUCCESS

Temporary Link Failures / Query Restarts Prior to Commit

CLIENT PEER-A PEER-B PEER-C
BEGIN —— » BEGIN BEGIN BEGIN
QUERYl — » | QUERYI QUERY1 STALL
QUERY2 — » | QUERY2 QUERY2 FREEZETS
QUERY3 — » | QUERY3 LATENCY QUERY1
QUERY4 — » |QUERY4(R) QUERY3 QUERY2
QUERY5 | » N > QUERY4(R) QUERY3

—
OUERY; | w | FAILURE LATENGY LATENCY
QUERYS > BECGIN QUERY6 QUERY4
QUERY9 > I QUERY1 QUERY7 QUERY5
COMMIT1 > | QUERYZ QUERYS QUERY6
i QUERY3 QUERY9 QUERY7
QUERY4 COMMIT1 QUERYS
QUORUM1/2 ACKC1 QUERY9
v COMMIT1
QUORUM2/2 |« ACKC1
> ABORT
COMMIT?2 > COMMIT2

» COMMIT2

*PARTIAL RESULTS MAY HAVE TO BE THROWN OUT IF REAQUIRING FROM A NEW PEER
*NO HICUPS, NEXT LOWEST-LATENCY PEER CAN COMPLETE THE TRANSACTION
*NO LOCKING OVERHEAD WITHIN TRANSACTION BODY - RESTARTS EASY

Commit Phase — A Quorum is only a Minimum

CLIENT PEER-A PEER-B PEER-C
QUERY5 — > QUERY5 QUERY5 QUERY5
QUERY6 —» QUERY6 QUERY6 QUERY6
QUERY7 | » QUERY7 QUERY7 QUERY7
QUERY8 —» QUERYS QUERYS QUERYS
QUERY9 — » QUERY9 QUERY9 QUERY9

COMMIT¢ ———» | COMMITI COMMIT1 COMMIT1
QUORUM1/2 < ACKCl
QUORUM2/2 < ACKC1
QUORUMS3/2 < ACKC1
—» COMMIT2
COMMIT2 > COMMIT2
> COMMIT2
QUORUM1/2 < ACKC2
FINISHED |« QUORUM?2/2 <= ACKC2
(IGNORE) = ACKC2

*FINAL COMPLETION TO CLIENT CAN OCCUR AFTER QUORUM'S WORTH OF COMMIT-2 ACKS
*SENDING COMMIT-2 TO MORE THEN A QUORUM IMPROVES ROBUSTNESS AND SAFETY
*ASYNCHRONOUS BACKGROUND REPLICATION IS THE KEY TO FLEXIBILITY

*REMEMBER, MUST THROW AWAY ACKC1's AFTER FIRST COMMIT-2 SENT

Failures During the Commit Phase

CLIENT PEER-A PEER-B PEER-C
COMMITI —— % | COMMIT1 COMMIT1 COMMIT1
v

QUORUM1/2 < ACKCl

QUORUM2/2 = ACKC1

QUORUM3/2 = ACKC1

—» COMMIT2
COMMIT2 > COMMIT2
» COMMIT2

QUORUM1/2 <+ ACKC2
QUORUM1/2 =

FINISHED
(SUCCESS?)

< QUORUM1/2 =

*DATA MAY NOT HAVE BEEN COMMITTED TO A QUORUM EVEN THOUGH WE MEANT TO

*WE CANNOT RESTART THE TRANSACTION ON B AND C DUE TO ASYNCHRONOUS REPLICATION
*QUORUM (B AND C) MAY MOVE THEIR SYNCHRONIZATION POINT PAST THE TRANSACTION

°[F SYNCH POINT MOVED ON B AND C, REPLICATION FROM PEER-A MIGHT NOT OCCUR

°B AND C KNOW THAT A TRANSACTION WAS IN PROGRESS, STILL HAVE THE COMMIT-1 DATA
*B AND C DO NOT KNOW THE TRANSACTION ID IF THEY DID NOT GET THE COMMIT-2
*REPLICATION FAILURE OR RECOVERY CONFLICT CAN STILL BE DETECTED AFTER THE FACT

Detecting Data Corruption

CLIENT#1

D

0831

I

0831

CLIENT#3

D

0833

INSERT

0830

CLIENT#1

0831

0831

-4

*CRC RANGE OF (SORTED) TRANSACTION ID'S AND CHECK AGAINST ALL OTHER COPIES
*UNIQUE DATA NOT UNIQUE
*TABLE CONSTRAINTS FAIL

*INDEXES MISS SOME OF RECORDS
°L.OG DOES NOT MATCH DATA

*(RUN TIME) ORDERED QUERY RESULTS DO NOT AGREE

